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The problem of minimizing the total pressure loss accompanying the breakdown of a supersonic flow to subsonic velocities through 
a system of successively ordered shock waves is considered. By changing to the corresponding problem of non-linear programming 
with non-linear constraints in the form of inequalities, a point which is suspected of being an extremum is determined and it is 
proved that it is the point of a strict local minimum. It is noted that, when the number of shock waves increases to infinity, the 
optimal shock wave system changes into an isoentropic wave. © 1999 Elsevier Science Ltd. All rights reserved. 

This problem arose in the middle of the 1940s in connection with the problem of constructing efficient 
supersonic air intakes. One of the first people to do work in this field was Osvatich (see the bibliography 
in [1]), who considered systems consisting of n oblique and a normal (n + 1)th closing shock wave. As 
regards minimizing the total pressure loss, such systems were found to be more effective than a single 
normal shock wave at any intensities of the first n oblique shock waves. In this case, for a specified free- 
stream Mach number and a specified number n of oblique shock waves, optimal values of the intensities 
of the oblique shock waves exist for which the total pressure losses are a minimum. 

The results of Osvatich's work, which was carried out in Germany in 1943 and was classified, turned 
up in the USA after the end of World War II. In 1947, Petrov and Ukhov proposed a numerical solution 
of the problem (see [2]) and, unlike Osvatich, they not only considered systems with a normal closing 
shock wave, but also systems consisting of n oblique shock waves and a closing sonic shock wave. As it 
turned out, the latter ensures a better restoration of the total pressure [2]. 

In the middle of the 1980s, Petrov proposed to one of us that an attempt should be made to obtain 
an analytic solution of the problem, subject to the condition that the type of dosing shock wave should 
not be fixed in advance but obtained as one of the results of the solution. 

In this paper, such a solution is now presented at the stage of a preliminary analysis of the problem. 
The solution obtained is compared with Osvatich's results. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

A plane supersonic flow of a perfect inviscid gas, which successively traverses a system Sn+l consisting 
of n + 1 shock waves, is considered. It has been shown (see [3], for example) that, for a fixed free- 
stream Mach number and a fixed adiabatic exponent ~, ~ (1, 2], the ratio of any gas dynamic variables 
in the system and preceding it is expressed in terms of the intensities J~ = Pk/Pk-1 of the shock waves. 
In particular, the total pressure loss factor K~nO)l, which is the ratio of the total pressure downstream 
of the system Sn+ 1 to the total pressure of the unperturbed flow, is defined by the formula 

,t:,L L ; ]  ' • "~+l = Jk J,(I+EJ,) , ~,=l+e2e ~=7+lY-I (1.1) 

One of the most important problems which is frequently encountered in practice is the problem of 
the breakdown of a supersonic flow through the system Sn+l to subsonic velocities with minimum losses 
in the total pressure, that is, the problem 

fn(PO) +l ~ sup (1.2) 
Mn+ 1 51 
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where Mn+ 1 is the Mach number downstream of the system Sn+l, which is related to the free-stream 
Maeh number M as follows [3]: 

n+l Jk d" 
1 + g(M~s2+! - 1) = (1 + e ( M  2 - I ) ) r l n + l ,  t i n +  I = H (1 .3)  

k=l Jk(1 +e.J k) 

Starting from Osvatich's work, we take "a priori" a normal shock wave with intensity 

J~+, = (1 +E)M. ~ - e  (1.4) 

downstream of which the flow is always subsonic, as the closing (n + 1)th shock wave and thereby ensure 
that condition Mn+l ~< 1 is satisfied. The Jk of the remaining shock waves are then found from the 
optimality conditions. However, such an approach does not lead to the optimal result (see [2], for 
example). Actually, for any number Mn > 1, a closing shock wave exists which ensures the breakdown 
of the flow to a velocity equal to the velocity of sound. The intensity of this shock wave is calculated 
from the formula [5] 

-1+ +;t,, , rt.=l+~(M;,2-1) (1.5) 

It can be verified that j0 + 1 < J,~+l. Consequently, any shock wave with an intensity from the range [Jn°+ a, 
fin+x] can be taken as the closing shock wave. 

The aim of this paper is to find the solution of problem (1.2) when the intensity J,+a of the closing 
shock wave lies in the above-mentioned range. 

2. F O R M A L I Z A T I O N  OF THE PROBLEM 

We put I~ = 1 + e(M 2 - 1). According to (1.3), the inequalityMn+l ~< 1 can be written in the equivalent 
form 

--gH,~l + 1 ~> 0 (2.1) 

However, constraint (2.1) on the values of Jk is not unique. Actually, Zemplen's theorem [4] imposes 
the additional constraints 

J k -  1 ~> 0, k = l  ..... n + l  (2.2) 

Moreover, for system Sn+I to exist, it is necessary that the Mach number in each of the first n shock 
waves should be greater than or equal to unity. This condition has the form 

IJ.rlt- 1 ~> o, k = I ..... n (2.3) 

Finally, the intensity Jn+a of the closing shock wave must not exceed the intensity of the normal shock 
wave (1.4), which leads to the inequality 

-(1 + e/.+0 + (1 + e)lffl. ~> 0 (2.4) 

Constraints (2.1)-(2.4) fully describe the set of designs f2 for the extremal problem in question. 
However, some of these constraints are superfluous. 

Actually, inequality (2.1) denotes that the intensity of the (n + 1)th closing shock wave must be greater 
than or equal to the "sonic" intensityfln+l (1.5). However, this intensity is always greater than or equal 
to unity so that the intensity Jn+l of the closing shock wave automatically satisfies Zemplen's theorem. 
Consequently, when account is taken of (2.1), condition (2.2) can be rewritten as 

J k - l ~ > 0 ,  k = l  ..... n (2.5) 

Next, when account is taken of (2.5), only the last (when k = n) of all the inequalities (2.3) is of interest. 
The remaining inequalities are automatically satisfied since 

(Ji + e)/[Ji( 1 + e./i)] <~ 1when Ji >~ 1 
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Hence, the set of designs f~ of the extremal problem can finally be described by the following system 
of inequalities 

J k -  1 ~> 0, k = l  ..... n (2.6) 

IffI. - 1  ~> 0, -Iffl,,+~ +1 ~> 0, - (1  + eJ.+l) + (1 + ~)lffl . ~> 0 

The parameters occurring in this system satisfiy the constraints 

Ix>l, e e  (0 ,~l  (2.7) 

Instead of/~n0+)l, it is convenient to introduce its reciprocal I(J) = 1//~n0+) 1 as the objective function, 
where J = (J1 . . . . .  Jn+l). According to (1.1) 

I(J') = E Jk ~ )  j (2.8) 

We arrive at the final form for the required extremal problem 

/(J) ---) inf (2.9) 
J E l l  

3. P R E L I M I N A R Y  ANALYSIS 

The set of designs ft of problem (2.9) is not empty: the vector J = (1 . . . . .  1, Jnl+l) satisfies the 
constraints of problem (2.9) for any values of g and ~ from the ranges (2.7). 

We now consider the third constraint of (2.6). This can be rewritten in the form 

a(J) : = I/Ha+ ! ~ IX (3.1) 

In this case, according to (2.8) 

. n + !  1 
l (J)  = a~'(J) n - -  (3.2) 

k=l Jk 

When inequality (3.1) becomes an equality, the first factor on the right-hand side of (3.2) takes the 
minimum value. We also note that the objective function I(J) is symmetric. This provides grounds for 
supposing that the components of the solution J* are equal to one another. It may therefore be assumed 
that the point J* = (x . . . . .  x), at which relation (3.1) is satisfied as an equality, will be the point which 
is suspected of being the extremum. It can be verified that the componentsx of the point J* are calculated 
from the formula 

a - I  F(o~-  I'~ 2 ]14 Ixt/o+.) (3.3) 
, - ,  " =  

We will now show that, at the point J*, the first two and the last constraints are not active. As regards 
the first constraint, this is obvious sincex > 1. The left-hand sides of the second and the last inequalities 
at the point J* are respectively equal to 

x ( l + ~ )  land(l+~x)F,(1+e)x 1] 
X+E L X + 8  

They are positive when x > 1. Hence, only the third constraint is active at the point J*. 

4. S T R I C T  LOCAL O P T I M A L I T Y  

We will now consider the auxiliary problem 

/(J) .--) inf, a(J) - Ix ~> 0 (4.1) 
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and show that the point J* = (x . . . .  , x), where x is calculated using formula (3.3), is the point of a 
strictly local minimum in the case of this problem. It will follow in an obvious way from here that J* is 
the point of a strict local minimum in the case of problem (2.9) also. 

We recall that the constraint a(J)  - g I> 0 is active at the point J*. We make use of the sufficient 
conditions for a strict local minimum for a linear programming problem [6]. A strict local optimality 
of J* will be established if we find a positive number u* such that I '(J*) = u*a'(J*) and 

( ( /" (J*) -  u*a"(J*))g, g) > 0 

for all non-zero vectors g from the tangential subspace 

(4.2) 

In particular 

W h e n j  = k 

We put 

In particular 

We will denote the partial derivative of the function a(J) with respect to Jg by aI,(J). By (3.1), we have 

In particular 

a~(J)=eb(Jk)c(Jk)a(J) 

b(t) = t 2 + 2et + 1, c(t) = [t(t + ~)(1 + I~')] - I  

a~ ( J ' )  = eb(x)c(x)a(J ')  

We immediately note that condition (4.3) is equivalent to the following 

n+l 
E gk = 0  
k=l 

Next, by (3.2), (4.4) and the definition of ~. 

If(J)  =[XaX-I(J)a'k(J)-aX(J)J~tl"fil S.[I 1 -8  ;=l = ' 2  (Jk-1)2c(Jk)l(J) 

1 - ~  "x t~CJ') = ---~----( - l)2cCx)l(J ") 

• l - e  ( x - l )  2 l(J*) > 0  
u := 2e b(x) a(J*) 

Then, by virtue of (4.5) and (4.8), the equality I '(J*) = u*a'(J*) will be satisfied. 
We will now verify condition (4.2). W h e n j  ~ k, by (4.4) and (4.7), we have 

a~(J)  = e2b(Jk )c(J k)b(J l)c(Jj )a(J) 

i~ ( j )  _- 1 (1 - e) 2 (Jk - 1) 2 c(Jk)(Jr - 1)2 c(Jj )l(J)  

a~(J) = ~2(St)a(j ) [~  2(Jk) + nCS~)] 

l ~ ( j ) = l ( I - e ) c ' ( J , ) l ( j ) [ l ( I - e ) ( J , - 1 )  4 + P(JD] 

rl(t) = 2(t + e)c -j (t) - b(t)[c -I (t)]', p(t) = 2(t - 1)c-i (t) - (t - 1) 2 [c -l (t)]' 

a " ( J  *) = ec 2 (x)a(J*)[eb 2 (x)C + ~(x)E] 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(a'(J*), g) = 0 (4.3) 
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- e)c 2(x)t(J') ~(1 - e)(x- l) 4 C + p(x)E] #"(J') = l ( l  [z 

where C is a matrix with elements which are all equal to unity and E is the identity matrix. On taking 
account of equalities (4.6) and (4.9), we obtain 

((#"(J*)-u*a"(J*))g,  g) = ~ II g II 2 (4.10) 

= (1 - e 2)(x 2 - 1)b -I ( x ) c ( x ) l ( J * )  

It is obvious that ~ > 0. Inequality (4.2) now follows from (4.10). 
It has therefore been proved that sufficient conditions for optimality are satisfied at the point J*. We 

note that, in non-linear programming, results of this type can only rarely be obtained successfully. 

5. ANALYSIS OF THE R E S U L T  

It has been shown above that, when the intensity of the closing shock wave belongs to the range [J° n + 1, 
J~÷l], the solution J* of the problem has the form 

,: 
= 2e Lt 2e J o~ , k = l  ..... n + l  (5.1) 

In this case, the flow velocity downstream of the last closing shock wave is exactly equal to the velocity 
of sound and Jn+l = J°+l. 

Osvatich considered systems in which the closing shock wave is normal, that is, systems with,In + 1 = J~ + 1. 
For such systems, a minimum loss in the total pressure is achieved, if the intensities of the first n oblique 
shockwaves are equal to one another (J1 = • . .  = Jn = J°) and they are determined from the equation 

I l = A y,n-I (1 + P..l,) n [.i2, + 2 B  J ,  + I + ( J ,  - 1)(Y, l + 2 C J ,  + 1) j~ ] 
(J,  + e)" 

e 2 + 2e + 2 (5.2) A = £(2 + £ ) .  B = ; C = e(3e + 4) 
4(1 +e)  2 ' e(2 +e)  (2+e)  2 

We now see how much the total pressure loss factor K~n°+) 1 in a system with intensities (5.1) differs 
from the loss factor in the optimal system (5.2) with a normal closing shock wave in the case when 
M = 3, y = 1, 4 and n = 1. With these values of the parameters, the intensities of all the shock waves 
in the system, calculated using formula (5.1), are equal to 3.591. In the optimal system with the normal 
closing shock wave, the intensity of the first shock wave is equal to 4.341 and the intensity of the normal 
closing shock wave is equal to 3.841. Here, the total pressure loss factor is equal to 0.664 in the first 
case and 0.581 in the second case. 

6. T H E  A S Y M P T O T I C  B E H A V I O U R  OF THE S O L U T I O N  

We return to formula (3.3). The magnitudes of ¢t and x depend on n + 1, and we shall therefore 
employ the notation ¢tn+l and xn+l. It is obvious that 

lim x n = 1, lira n(o~ n - 1) = lnl.t (6.1) 
n " ~  oo tl - - - -~  

We will now show that 

The quantity xn satisfies the relation 

lim (x n)n = ~t ~. (6.2) 
t l - -~oo 

x n (1 + ~..x n ) = a n ( x  n + E) 

which, after some reduction, can be rewritten in the form 
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x n = i + ( c t  n - l ) u  n, V n = + (6.3) 

According to the first relation of (6.1), we have 

l + e  
lim o n = = ~, (6.4) 
n-,** 2E 

It remains to raise both sides of equality (6.3) to the power n, take the limit as n ~ oo and use the second 
relation of (6.2) and (6.4). 

We will now present a physical interpretation of the results. The ratio J~ of the static pressures 
downstream and upstream of the system Sn of n shock waves, which is sometimes called the intensity 
of the system [3], is expressed in terms of the intensities Jk of the shock waves using the formula 

j o =  P..._~n = f i  Pk =f i  Jk 
P k=l Pk-J k=l 

Consequently, the quantity (Xn) n, which, by definition, is equal to the product of the intensities of the 
shock waves in the optimal system S(n po), is also the ratio of the pressures downstream and upstream 
of the system S~ po). 

It is well known that the breakdown of a supersonic flow to a velocity equal to the velocity of sound 
can also be brought about through a simple compression wave w [4]. The intensity of such a wave is 
related to the free-stream Mach number as follows: 

Jw = ix ~, (6.5) 

In this case, unlike in the case of shock waves, the total pressure loss in it generally does not exceed 
J - 1, that is, it is optimal from this point of view and ideally solves problem (1.2). 

Formulae (6.2) and (6.5) therefore show that, as the number of shock waves in the optimal system 
Sn 0'0) increases up to infinity, the pressure drop in the optimal system does not simply tend to a finite 
value but it tends to the intensity of the optimal isentropic wave Jw. Moreover, the pressure drop in an 
individual shock wave tends to unity (see the first relation of (6.1)) so that the shock wave degenerates 
into a weak discontinuity [4]. Consequently, a qualitative transition occurs when n ~ oo and the system 
Sn (p0) is converted into the optimal isentropic wave. 

The arguments which have been presented together with the results in [3] enable us to treat any system 
consisting of n shock waves as a certain rough model of an isentropic wave. For fixed n, this model is 
most accurate when the intensities of the shock waves occurring in the system are equal to one another. 

The above arguments have been presented previously at an intuitive level. In this paper, they have 
received a rigorous justification. 

This research was supported financially by the Foundation for Research in the Area of Fundamental 
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